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Biological dinitrogen fixation, the reduction of Nto 2NHs, Scheme 1
represents the single largest input of fixed nitrogen into the global N No-M
biogeochemical nitrogen cycle. This process, which is exclusive z @) 1
to microbes, is catalyzed by the metalloenzyme nitrogénased
has an optimal stoichiometry given by eq 1. NzH-M
H*/e
N,+ 8¢ + 16MgATP+ 8H" — e [NoH-M
2NH, + H, + 16MgADP + 16P (1) (m)< | (e
NaHz-M
The Mo-dependent nitrogenases have two component proteins. l@
The Fe protein acts as a specific reductant of the MoFe protein in NoHa-M
a reaction that requires the hydrolysis of 2 equiv of MgATP per _" ; 4 -
electron transferred. The MoFe protein contains two types of metal l
clusters: the P cluster ([8F&S]), which mediates electron transfer (1) 4 NHz-M + NHy ——— NH;
between the Fe protein, and the FeMo cofactor (M cluster;{7Fe l
9S—Mo—X—homocitrate]), which binds and reduces. NUntil NH3-M ——— NH;

recently? not even the site of Nbinding on the FeMo cofactor

was known, much less the nature of intermediates involved. A nitrogenous substratd$,thus allowing an intermediate to be
combined biochemicaigenetic strategy now has indicated that {rappedio The substitution ofi-70"2 by Ala was earlier shown to
nitrogenous (e.g., Nand hydrazine) as well as alkyne (€.9., accommodate the binding of the larger substrate, hydrazine.
propargyl alcohol and acetylene) substrates interact at a common  g£5ch of these samples shows an EPR si§maising from anS
FeS face of the FeMo cofactor composed of Fe atoms 2, 3, 6, and_ Y, state of the FeMo cofactor. Thgtensors are unique to each
7478 Progress toward understanding how substrates interact Withintermediateg(e) = [2.084, 1.993, 1.969y(m) = [2.083, 2.021
the FeMo cofactor has been made by freeze-quench trappingl_ggs]’ g(l) = [2.082, 2.015, 1.987], which suggests that three

substrates ™t and inhibitord? during turnover of MoFe proteins jistinct intermediates may have been trapped. T8agigd [(M)
with specific amino acid sgbstltutlons above this face, but only one (I)] represent at least two distinctNeduction stages is established
of these has involved a nitrogenous substtate. by 15N ENDOR measurements on samples prepared With

It is proposed that Nreduction by nitrogenase involves a series labeled substrates arit measurements on samples inCHand
of FeMo cofactor-bound intermediat&s* beginning with bound D0 buffers. The'5N, and5N,H, were obtained from Cambridge

Ni and g_rotceec]i‘lgg;hrou%ht’:hf 2-er:§c:ron/2(-jpr:)tor;], serlnl-redlljc(tjad sotope Laboratories; GHN=NH was prepared fromN-
intermediates of Scheme 1, but such intermediates have long eludeq, 12 mine as had been descrifec:

icnzigtlrjnrzai:teerfrvaweegrsjrei:\n t:ne efgrstgt) Esetgotret ;fNar;lj%f::-t;i);)nplglatlon Figure 1A shows N Mims pulsed ENDOR® spectra collected
pp 9 9 y at g for e(*>N,), m(*>NH=N—CHz), andI(**N,H,4). Each spectrum

nitrogenase. In addition, intermediates have been trapped duringContains a singléN doublet that is centered at th&N Larmor

the reduction of a diazene and of hydrazineNHNH) in an frequency and is absent in spectra of samples prepared4Mth

légtgrg)ptsigalézusfllzmergldti::rgggI?éiig%r;eif Ozdp:?(gli:;)inm;;):;g?ac- labeled substrates. This demonstrates that each has a substrate-
' derived species bound to the FeMo cofactor. Each signal has a

terization by EPR and ENDOR of th intermediates is presented. . . o .
erizatio l_Jy and OR ofthese intermediates is prese e_d ifferent hyperfine splitting of it$°N doublet, A(g): 0.9 MHz,
Three nitrogenase turnover systems were freeze-quenched durin 150) 1.5 MH 5NH=N—CH-)- 1.9 MHa. (15N-H
steady-state enzymatic turnovép (e) wild-type MoFe protein with 2 1. Z, M("NH= ), 1.9 MHZ, 1("™NoHa).
The observation of distinct splittings is suggestive that the three

N, as substratenf) o-195°" MoFe protein with CH—N=NH as . .
substraté517 and () a—70M/0-1955" MoFe protein with HN— _states re_pres_ent dlstln_ct sta_ges ofriduction. H_owev_er, as each
NH, 10 as substraté The substitution ofi-195% by GIn has been |ntermed|ate is formed.ln a dlfferent.MoFe protein varllant, one must
suggested to disrupt the delivery of protons for reduction of consudt_ar whether e_nwronm_ental differences have induced differ-
ences in an otherwise equivalent common state that accumulates
#Utah State University. during turnover of all three substrates. The presence of at least two
TVirginia Tech. distinct reduction states is establishedHyENDOR measurements

* Northwestern University. >
# Kyungpook National University. (Figure 1B).
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Figure 1. (A) Q-band Mims € and m) and Re-Mims ) 15N ENDOR
spectra collected aggConditions: microwave frequeney 34.808-34.819
GHz; B/2= 52 ns €, m) and 32 nsl); RF = 20—30us; ¥ = 500 ns §),
300 ns (n), and 200 nslf; sampling= ~1000 transients/point; repetition
rate= 100 Hz g€ andm), 50 Hz (); 2 K. (B) CW H ENDOR. Conditions:
microwave frequency= 35.057-35.171 GHz; modulation amplitude 4

G; RF sweep speed 1 MHz/s; bandwidth of RF broadened to 100 kHz;
2K.

All three intermediates show an unresolved peak at the proton

Larmor frequency from the nonexchangeable (unchanged.@ D
buffer) “matrix” protons of nearby residues. HowevéiiN,Hy)
shows a signal from an exchangeable proton(s),)Atg8 MHz,
and m(NH=N-—CHj3) shows an analogous signal with a slightly
larger coupling, A(g) ~ 9 MHz. These signals are similar to those
shown by an alkene bound to FeMo cofactor during alkyne
reductiont! and presumably arise from arANH, moiety bound to
the cofactor. In contras&(N,) shows no such exchangeable proton-
(s). This absence clearly establishes #{&t,) is at a distinct and
earlier stage of reduction (Scheme 1) than th@®H=N—CH,)
andl(N2H,) intermediates. Whether or not the modest differences
in 15N and!H ENDOR responses by intermediatesand | arise
because they too are at different stages efréduction must be
determined by more detailed studies.

The g spectra of Figure 1 represent a single orientation of the

Chart 1

analysis of their respective “electron inventories”, namely, the total
number of electrons accumulated in the FeMo cofactor and on the
substraté? would represent a major step toward revealing the

mysteries of N fixation by nitrogenase.
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